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Abstract. In this paper we describe a tool to verify Er-
lang programs and show, by means of an industrial case
study, how this tool is used. The tool includes a num-
ber of components, including a translation component, a
state space generation component and a model checking
component.

To verify properties of the code, the tool first trans-
lates the Erlang code into a process algebraic specifi-
cation. The outcome of the translation is made more
efficient by using the fact that software written in Er-
lang builds upon software design patterns such as client—
server behaviours. A labelled transition system is con-

structed from the specification by use of the uCRL toolset.

The resulting labelled transition system is model checked
against a set of properties formulated in the p-calculus
using the C£SAR/ALDEBARAN toolset.

As a case-study we focus on a simplified resource
manager modelled on a real implementation in the con-
trol software of the AXD 301 ATM switch. Some of the
key properties we verified for the program are mutual
exclusion and non-starvation. Since the toolset supports
only the regular alternation free p-calculus some inge-
nuity is needed for checking the liveness property ‘non-
starvation’. The case-study has been refined step-by-step
to provide more functionality; each step motivated by a
corresponding formal verification using model checking.

Key words: Formal Methods, Software Verification, Model

Checking, Functional Programming, Erlang

1 Introduction

In this paper we describe an approach to the verifica-
tion of Erlang code which involves model checking an
abstraction of the code by translating it into a process
algebra.

The telecommunication company Ericsson is using
the functional programming language Erlang [1] for the

development of concurrent/distributed software for telecom-

munications equipment. One of the larger examples of
such a system is the AXD 301 high capacity ATM switch
[7], used to implement, for example, the backbone net-
work in the UK. The software of this switch consists of
about half a million lines of Erlang code.

This code is written in a development process that
is rather similar to the Extreme Programming approach
[27): designers write and test it themselves and in small
iterations, features are added to the code until a final
release stage is reached.

In Ericsson the software for large projects like the
AXD 301 switch is written according to rather strict de-
sign principles. For the AXD software, a number of soft-
ware components are used which have been specified for
use in a number of Ericsson projects. These components
can be seen as higher-order functions for which certain
functions have to be given to determine the specific func-
tionality of the component. About eighty percent of the
software implements code for this specific functionality
of one of these components, the majority of this for the
generic server component. The generic server is a com-
ponent that implements a process with a simple state
parameter and mechanism to handle messages in a fifo
message queue.

The development process and the use of these li-
brary components both ensure that the code is tested
many times before the final implementation. For exam-
ple, during development the software is often written
during day-time and tested overnight. The test cases are
written by the designers in parallel with the code and a
test server automatically runs these test cases.

However, despite this extensive testing, for critical
devices such as telecommunications switches it is clearly
preferably to have even higher levels of assurance that
the code is correct. OQur aim, therefore, is to build a
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formal verification tool that fits into this development
process.

The tool supports (overnight) verification of proper-
ties, the purpose of which is to check aspects similar to
the testing process. This paper describes the tool that we
developed and the use of the tool is illustrated by a case
study that is taken from the AXD 301. The tool, and ap-
proach, is based on model checking a process algebraic
representation of the Erlang code, and therefore involves
issues such as abstraction of code to specification, state
space generation and model checking. The advantage of
our approach and tool over testing should be clear: it
covers a larger portion of the state space of the system,
indeed, when the state space is finite the whole state
space can be verified.

The case study we describe in this paper is a dis-
tributed resource manager, which was re-designed in the
same way as real production code would be re-designed.
In small iterations the complexity of software was in-
creased and properties were checked against these itera-
tions in turn. Clearly our re-design is based on the same
Ericsson design principles as the AXD 301 switch. Fol-
lowing these design principles and using real software
components makes the verification approach more real-
istic and easier; the message buffers of arbitrary Erlang
processes are more complicated than the constrained
message buffer in a generic server. Thus, by using the
semantics of the generic server, we obtain smaller state
spaces.

Another requirement of our verification tool is that
it should be accessible to Erlang programmers, without
forcing them to learn a specification language. Clearly,
they will receive help when formulating the properties
they want to prove, but in fact these need not change
much during the iterations in the development. A special
team provides proof-scripts in which the properties are
embedded and these can be run against the Erlang code.
The feedback of these scripts is in terms of traces in
Erlang syntax, so that programmers can understand the
counter-examples that the model checker has produced.

In one sense this work is not new: using model check-
ing for the formal verification of software is by now a well
known field of research, it is in the details that we of-
fer some novelty. There are essentially two approaches
to the overall problem, either one uses a specification
language in combination with a model checker to obtain
a correct specification that is used to write an imple-
mentation in a programming language, or one takes the
program code as a starting point and abstracts that into
a model, which can be checked by a model checker. Ei-
ther way, the implementation is not proved correct by
these approaches, but when an error is encountered, this
may indicate an error in the implementation. As such,
the use of model checking can be seen as a very accurate
testing method.

For the first approach, one of the most successful of
the many examples is the combination of the specifi-

cation language Promela and model checker SPIN [19].
The attractive merit of Promela is that this language is
so close to the implementation language C, that it be-
comes rather easy to derive the implementation from the
specification in a direct, fault free way. In case one uses
UML as specification language and Java or C as imple-
mentation language, one might need more effort (apart
from the fact that model checking UML specifications is
still an unsettled topic).

The work we describe here is part of the second ap-
proach, other examples of which include PathFinder [18]
and Bandera [10] which consider the problem of verify-
ing code written in Java. Our work has similar concerns
and follows a similar approach except that we use the
knowledge of the occurring design patterns used in the
Erlang code to obtain smaller state spaces. We follow a
similar approach to the translation of Java into Promela,
checked by SPIN [18]; however, we translate Erlang into
pCRL [17] and model check by using CESAR/ALDEBARAN
[16].

An earlier attempt for model checking Erlang code
by Huch [20] differs in many ways from our approach.
In contrast to Huch’s approach we consider data aspects
which are crucial for the properties we wish to check
in the Erlang code. In particular, Huch abstracts case
statements by non-deterministic choices, this loses all
reference to the data, whereas our model checking takes
the data values into account.

This allows us to check for mutual exclusion and the
absence of deadlock for the resource manager that will
be the leading example of this paper. If one abstracts
from the data in this program in such a way that case
statements are translated into non-deterministic choices,
then mutual exclusion is no longer guaranteed and can
hence not be shown.

The paper is organised as follows: we start with a
brief explanation of the AXD 301 switch in Sect. 2.
Thereafter we explain the software components we fo-
cussed on, viz. the generic server and supervisors in Sect.
3. The actual Erlang code, given in Sect. 4, is built using
those components and along with the code we describe
the implemented algorithm.

The main part of our tool, the translation of Erlang
code into a process algebra model is presented in Sect.
5. This model is used to generate the labelled transition
system in which the labels correspond to communication
events between Erlang processes. We used additional ex-
ternal tools to generate the state space, reduce the state
space with respect to bisimulation relations and to model
check several properties.

In Sect. 6 we focus on the mutual exclusion and non-
starvation property which have been verified for the code
using model checking in combination with bisimulation
reduction. In Sect. 7 we show how we use scripts to auto-
mate the actual verification in the development process.
We conclude with some remarks on performance and fea-
sibility, and a comparison to other approaches in Sect. 8.
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Fig. 1. AXD 301 hardware architecture

2 Ericsson’s AXD 301 switch

Ericsson’s AXD 301 is a high capacity ATM switch, scal-
able from 10 to 160 GBits/sec [7]. The switch is used, for
example, in the core network to connect city telephone
exchanges with each other.

(From a hardware point of view, the switch consists
of a switch core, which is connected on one side to several
device processors (that in their turn are connected to
devices), and on the other side to an even number of
control processors (workstations). The actual number of
these control processors depends on the configuration
and demanded capacity and ranges from 2 till 32 (see
Fig. 1).

The workstations (control processors) operate in pairs
for reasons of fault tolerance; one workstation is assigned
to be the call control (cc) node and the other the oper-
ation and maintenance (0&m) node. Basically, call con-
trol deals with establishing connections, and operation
and maintenance deals with configuration management,
billing and such. Both the cc and 0ém software consists
of several applications, which implement many concur-
rently operating processes.

Every workstation runs one Erlang node, i.e., a pro-
gram to execute Erlang byte code implementing several
thousands of concurrent Erlang processes. The critical
data of these processes is replicated and present on at
least two nodes in the system. In case a workstation
breaks down, a new Erlang node is started on the work-
station it is paired with and depending on the function-
ality of the broken node, either the cc or the 0é4m appli-
cations are started.

A distributed resource locker is used when the bro-
ken workstation is restarted (or replaced) and available
again for operation. A new Erlang node is started at the
workstation, and the pairing workstation can leave one
of its tasks to the restarted workstation. Typically o0ém
will be moved, since that is easiest to move. Although
easiest, this is not without consequences. Every 0ém ap-

plication may access several critical resources and while
doing so, it might be hazardous to move the application.
For that reason the designers of the switch have intro-
duced a classical resource manager, here called a locker.
Whenever any of the processes in any application needs
to perform an operation during which that application
cannot be moved, it will request a lock on the applica-
tion. The lock can be shared by many processes, since
they all indicate that the application is to remain at its
node. The process that wants to move an application will
also request a lock on that application, but this time an
exclusive one. The purpose of this lock, therefore, is to
enable guarantees to be given to processes about when
they can safely move applications.

3 Erlang software components

In Ericsson’s large software projects the architecture of
the software is described by means of software compo-
nents, i.e., the implementation is specified by means of
communicating servers, finite state machines, supervi-
sors and such. In the control software for the AXD about
eighty percent of the software is specified in terms of such
components, the majority of it as processes that behave
like servers.

8.1 Generic server component

A server is a process that waits for a message from an-
other process, computes a certain response message and
sends that back to the original process. Normally the
server will have an internal state, which is initialised
when starting the server and updated whenever a mes-
sage has been received.

In Erlang one implements a server by creating a pro-
cess that evaluates a (non-terminating) recursive func-
tion consisting of a receive statement in which every in-
coming message has a response as result.

serverloop(State) ->
receive
{call,Pid,Message} —>
Pid ! compute_answer(Message,State),

serverloop(compute_new_state(Message,State))

end.

Erlang has an asynchronous communication mechanism
where any process can send (using the ! operator) a mes-
sage to any other process of which it happens to know
the process identifier (the variable Pid in the example
above). Sending is always possible and non-blocking; the
message arrives in the unbounded mailbox of the speci-
fied process. The latter process can inspect its mailbox
by the receive statement. A sequence of patterns can
be specified to read specific messages from the mailbox.
In the example above the first message in the mailbox
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which has the form of a tuple is read, where the first ar-
gument of the tuple should be the atom call, the vari-
able Pid is then bound to the second argument of this
tuple, and Message is bound to its last argument.

Of course, this simple server concept gets decorated
with a lot of features in a real implementation. There is a
mechanism to delay the response to a message, and some
messages simply never expect a reply. Certain special
messages for stopping the server, logging events, chang-
ing code in a running system and so on, are added as
patterns in the receive loop. Debugging information is
provided, used during development and testing. All to-
gether this makes a server a rather large piece of soft-
ware and since all these servers have the same struc-
ture, there are considerable advantages in providing a
generic server implementation. This generic server has
all features of the server, apart from the specific com-
putation of reply message and new state. Put simply,
by providing the above functions compute_answer and
compute new_state a fully functional server is specified
with all necessary features for production code.

Reality is a bit more complicated, but not much:
when starting a server one provides the name of a module
in which the functions for initialisation and call handling
are specified. One could see this as the generic server
being a higher-order function which takes these specific
functions, called callback functions, as arguments. The
interface of these functions is determined by the generic
server implementation. The initialisation function returns
the initial state. A function handle_call is called with
an incoming message, the client process identifier, and
state of the server. It returns a tuple either of the form
{reply,Message,State}, where the server takes care
that this message is replied to the client and that the
state is updated, or {noreply,State} where only a state
update takes place. The locker algorithm that we present
in this paper is implemented as a callback module of
the generic server, thus the locker module implements
the above mentioned functions for initialisation and call
handling.

Client processes use a uniform way of communicating
with the server, enforced by embedding the communica-
tion in a gen_server: call function call. This call causes
the client to suspend as long as the server has not replied
to the message. The specific function call adds a unique
tag to the message to ensure that clients stay suspended
even if other processes send messages to their mailbox.

8.2 Supervisor component

The assumption made when implementing the switch
software is that any Erlang process may unexpectedly
die, either because of a hardware failure, or a software
error in the code evaluated in the process. The runtime
system provides a mechanism to notify selected processes
of the fact that a certain other process has vanished;
this is realized by a special message that arrives in the

mailbox of processes that are specified to monitor the
vanished process.

On top of the Erlang primitives to ensure that pro-
cesses are aware of the existence of other processes, a su-
pervisor process is implemented. This process evaluates
a function that creates processes which it will monitor,
which we refer to as its children. After creating these
processes, it enters a receive loop and waits for a process
to die. If that happens, it might either restart the child
or use another predefined strategy to recover from the
problem.

4 The resource locker algorithm

The above sections have described the AXD 301 locker
and the Erlang software components. We were interested
in using this as a case-study to validate our approach to
verification of Erlang code. However, the actual imple-
mentation is overly complex for this purpose and there-
fore we re-implemented a small portion of the code mak-
ing appropriate simplifications where necessary.

Several prototypes have been developed and verified.
In these prototypes the resource locking process is im-
plemented as a server process (called ‘the locker’ in this
paper). An arbitrary number of client processes can re-
quest and release resources by communicating with this
Server process.

In the first prototype, the locker provides access to
one resource for an arbitrary number of clients. A second
prototype [2] includes an arbitrary number of resources
with exclusive access to them, i.e., two clients cannot
get access to the same resource at the same time. In
this section we show code fragments of the third proto-
type [3], which supports exclusive and shared access to
the resources. Some remarks about the first and second
prototypes are made where they might be of interest.

All the processes in the AXD 301 software are chil-
dren in a big tree of supervisor processes. Thus, the
locker and the clients of the locker also exist somewhere
in this tree. In our case-study we implemented a small su-
pervision tree for only the locker and a number of clients
(Fig. 2).

The root of the tree has two children: the locker and
another supervisor, which has as children all the client
processes. As in the real software, the whole locker ap-
plication is started by evaluating one expression, which
starts building the supervision tree and makes all pro-
cesses run.

It is important to realize that we use this supervision
tree to start the locker in different configurations. As
an argument of the start function for the supervisor we
provide the set of resources that the specific clients want
to access.

The expression

locker_sup:start([{[a],shared},{[a,b],exclusivel}])
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Fig. 2. Supervision tree for locker and clients

, for example, would start a supervision tree with a locker
and two clients, one client repeatedly requesting shared
access to resource a, the other repeatedly requesting ex-
clusive access to the resources a and b.

The locker is implemented as a callback module for
the generic server. In the following subsections we present
parts of the actual implementation of the client and
locker and we explain the underlying algorithm.

We present a significant part of the actual Erlang
code in order to stress that we verify Erlang code and
to illustrate the complexity of the kind of code we can
deal with. The full case-study contains about 250 lines
of code in which many advanced features of Erlang are
used®.

4.1 Implementing the client

The client process is implemented in a simple module, we
can do this since we have abstracted away from all eval-
uations in clients that do not directly relate to request-
ing, obtaining and releasing the resources. The generic
server call mechanism is used to communicate with the
locker. It is a synchronous communication implemented
by means of Erlang’s asynchronous primitives.

-module(client).

start (Locker,Resources,Type) ->

either shared or exclusive and Resources is bound to
a list of resources that the client wants access to.

4.2 Implementing the locker

The code of the locker algorithm is given as a generic
server callback module. The state of this server contains
a record of type lock for every resource that the locker
controls.

-module (locker).
-behaviour(gen_server) .

-record(lock,{resource,exclusive,shared,pending}) .

The lock record has four fields: resource for putting
the identifier of the resource, exclusive containing the
process that is having exclusive access to the resource
(or none otherwise), shared containing a list of all pro-
cesses that are having shared access to the resource, and
pending containing a list of pending processes, either
waiting for shared or for exclusive access.

The supervisor process constructs a list of all resources
involved from the starting configuration and passes it to
the initialisation of the locker. The locker initialisation
function then initialises a lock record for every resource
in that list. The state of the server is built by taking this
list and constructing a tuple together with the lists for
all exclusive requests and all shared requests that have
not been handled so far.

init (Resources) —>
{ok,{map (fun(Name) ->
#lock{resource = Name,
exclusive = none,
shared = [],
pending = [1}
end,Resources), [1,[1}}.

The latter two (initially empty) lists in the state of the
server are used by the algorithm to optimize the compu-
tations performed when deciding which pending client is
the next one that gets access. The first client in the pend-

{ok,spawn_link(client,loop, [Locker,Resources, T{#&]ip} of the lock record is not necessarily granted per-

loop(Locker,Resources,Type) ->

mission to obtain the resource. It may be the case that
the same client also waits for another resource, for which

gen_server: call (Locker , {request ,Resources , Type}.)l(,)ther client has hlgher priority. The priority could be

gen_server:call(Locker,release),
loop(Locker,Resources,Type) .

Between the two synchronous calls for request and re-
lease is the so called critical section. In the real imple-
mentation some critical code is placed in this critical
section, but we have (manually) abstracted away from
that. The variable Type represents the type of access a
client is requesting on the list of resources. This can be

1 The code is available at http://www.cs.kent.ac.uk/~cba7/.

reconstructed by building a graph of dependencies be-
tween the clients, but it is much easier to store the order
in which the requests arrive.

The server process continuously accesses its message
queue and whenever a call to the server has been made,
the corresponding message will eventually arrive at the
head of the queue. Then, the function handle_call in
the locker module is called. For a request message, this
function first checks whether all requested resources are
available. If so, it claims the resources by updating the
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lock records. The client receives an acknowledgement
and the state of the server is updated accordingly. If the
resources are not available, the lock records are updated
by putting the client in the pending lists of the requested
resources. The priority lists are changed, resulting in a
new state for the server. No message is sent to the client,
which causes the client to be suspended.

handle_call({request,Resources,Type},Client,

{Locks,Excls,Shared}) —>

case check_availables(Resources,Type,Locks) of
true ->
NewLocks =
map (fun(Lock) —->

send_reply(Type,Locks, [],NewPendings) ->
{Locks,NewPendings};
send_reply(Type,Locks, [Pending|Pendings] ,NewPendings) ->
case all_obtainable(Locks,Type,Pending) of
true —->
gen_server:reply(Pending,ok),
send_reply(Type,
map (fun(Lock) ->
promote_pending(Lock,Type,Pendin
end,Locks) ,Pendings,NewPendings) ;
false ->
send_reply(Type,Locks,Pendings,NewPendings++[Pendi
end.

claim_lock(Lock,Resources, Type cihgayove mentioned Erlang functions in the locker com-

end,Locks),
{reply, ok, {NewLocks,Excls,Shared}};
false ->
NewLocks =
map (fun(Lock) ->

bine message passing and computation. The rest of the
function is purely computational and rather straight for-
ward to implement. Therefore, here we only illustrate the
more interesting aspects.

The function check_availables is used to deter-

add_pending (Lock,Resources, Type, giipgpyhether a new requesting client can immediately

end,Locks),
case Type of
exclusive —>

be served. A resource is available for exclusive access if
no client holds the resource and no other client is wait-
ing for exclusive access to it. Note that it is not sufficient

{noreply, {NewLocks,Excls++[Client$O anlyderk whether no client accesses the resource at

shared ->

the time, since this could cause starvation. To illustrate

{noreply, {NewLocks,Excls,Shared+ +t]é.¥igﬂil§i}¥3 two resources and three clients, such that

end
end;

A client can release all its obtained resources by a sim-
ple release message, since the identity of the client is
sufficient to find out which resources it requested. After
removing the client from the fields in the lock record,
it is checked whether pending processes now have the
possibility to access the requested resources. This hap-
pens with higher priority for the clients that request ex-
clusive access, than for the clients that request shared
access. The algorithm prescribes that clients that re-
quested shared access to a resource but are waiting for
access, should be by-passed by a client that requests ex-
clusive access.

handle_call(release, Client, {Locks,Exclusives, Shared}pending

Locksl =

map (fun(Lock) ->

release_lock(Lock,Client)
end,Locks),

{Locks2,NewExclusives} =

send_reply(exclusive,Locksl,Exclusives,[]),
{Locks3,NewShared} =

send_reply(shared,Locks2,Shared, [1),
{reply,done,{Locks3,NewExclusives,NewShared}}.

The function send _reply checks whether a list of pend-
ing clients (either requesting exclusive or shared access)
can be granted access. If so, the client receives the ac-
knowledgement that it was waiting for, and the state of
the server is updated.

client 1 requests resource A, client 2 requests resource B,
and thereafter client 3 requests both resources. Client 1
releases and requests resource A again, client 2 releases
and requests B again. If this repeatedly continues, client
3 will wait for ever to get access, i.e., client 3 will starve.

A B
access 1 client 1 requests and gets access to A
pending
access 1 2 client 2 requests and gets access to B
pending
access 1 2 client 3 requests access to A and B and is put
pending 3 3 in the pending list
access 2 client 1 releases
3 3
access 1 2 client 1 requests and gets access to A again
pending 3 3
access 1 client 2 releases
pending 3 3
access 1 2 client 2 requests and gets access to B again
pending 3 3

This scenario indicates that in general one has to pay
a price for optimal resource usage: viz. a possible star-
vation. Therefore, the implementation checks whether a
client is waiting for a certain resource. Thus, in our ex-
ample, client 1 and 2 are both appended to the list of
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pending processes (waiting for client 3). Similar to the
exclusive case, for shared access the resource is available
if no process holds the resource exclusively, neither is a
client waiting for access to it. Therefore, the same con-
clusion holds, i.e., potential starvation is a consequence
of optimal resource usage.

The function add_pending simply inserts the client in
the pending lists of the resources it is requesting. An op-
timisation is applied when inserting clients in the pend-
ing list: clients requesting exclusive access are mentioned
before the ones requesting shared access. This allows a
quick check to see if there is a client exclusively waiting
for a resource, such a client should then be at the head
of the pending list.

The difference between the functions check_available
and all_obtainable is that in the latter the clients have
already been added to the pending lists of the requested
resources and therefore it should be checked that they
are at the head of these lists instead of checking that
these lists are empty. Moreover, there might be several
clients able to get access to their resources after only one
release, e.g., resources that were taken exclusively can
be shared by several clients and a client that occupied
several resources can free those resources for a number
of different clients.

5 Translating Erlang into a process algebra

In order to check that certain properties hold for all
possible runs of a program, we automatically translate
the Erlang modules into a process algebraic specifica-
tion. This approach allows us to use tools developed
for analysing process algebras rather than implement-
ing tools that work directly on Erlang code ourselves.
This has a number of benefits, for example, the use of a
process algebra allows us to distinguish in a formal way
communication actions and computation. It also means
that complex issues such as efficient state space gener-
ation are dealt with by reusing existing toolsets which
have been developed and refined over a number of years.

The process algebra we used to translate Erlang to
is wCRL [17]. This process algebra is particularly suited
to our requirements because we can express both com-
munication and data in it.

Several tools have been developed to support verifica-
tion of uCRL specifications [11,28]. Our approach to ver-

ification uses a model checker from the CESAR/ALDEBARAN

toolset [16]. In order to input the uCRL specifications
into the model checker, we need to convert the speci-
fication to an appropriate input format using the state
space generation tool of the uCRL toolset. We have also
experimented with static analysis tools to obtain specifi-
cations that resulted in smaller state spaces after genera-
tion, for example, the confcheck [26] tool from the uCRL
toolset which analyzes particular (confluent) internal ac-
tions in order to eliminate them. However, this had not

as big an impact as we had hoped for. We have not yet
investigated how we can best fine-tune the translation
to optimally use these tools.

The translation from Erlang to uCRL is performed in
two steps. First we apply a source-to-source transforma-
tion on the level of Erlang, resulting in Erlang code that
exhibits the same execution behaviour, to an observer, as
does the original code, but is optimised for verification.
Second we translate the collection of Erlang modules into
a uCRL specification. The advantage of having an inter-
mediate Erlang format is that programmers can easily
understand the more involved code transformations and
therefore are better able to understand the smaller trans-
lation step to uCRL notation and by translating some
syntactic sugar to more primitive operators, the step to
1CRL is easier to implement. Moreover, the intermediate
code can be input for other verification tools for Erlang

(e-g-, [4])-
5.1 Erlang to Erlang transformation

The source-to-source transformation of the Erlang mod-
ules contains many steps and we mention only the more
relevant ones, skipping trivial steps like removing the
debug statements in the code.

Erlang supports higher-order functions, but pCRL
does not. Luckily, most of the Erlang code in the switch
only uses a few predefined higher order functions, like
map, foldl, foldr, etc. Thus, we wrote a source-to-
source translator to replace function call occurrences like

map (fun(X) -> £(X,Y¥1,...,Yn) end, Xs)

by a call to a new Erlang function map £ (Xs,Y¥1,...,¥Yn)
which is defined and added to the code as

map_£f([],Y1,...,Yn) ->
;

map_f ([X|Xs],Y1,...,Yn) —>
[£f(X,Y1,...,Yn)| map_f(Xs,¥1,...,¥Yn)].

By using this transformation we can remove all calls to
the map function from the Erlang code. Other higher-
order functions are dealt with in a similar manner.

Because of a possible infinite state space, we avoid
dynamic process creation in yCRL. Therefore, we gener-
ate the uCRL specification for a certain configuration in
which the processes are fixed from the beginning. From
the Erlang code in which the processes are generated dy-
namically, we obtain our specification by evaluating the
supervision tree structure for the given configuration pa-
rameters.

In Sect. 4 we explained how to start the locker pro-

cess, e.g., by evaluating locker_sup:start ([{[a],shared},{[a,b],ex

Evaluating the same expression in our tool instead of in
the Erlang runtime system, results in one initial Erlang
process in which all leaves in the supervision tree are
started sequentially. This special process is later trans-
lated in the initialisation clause of the yCRL specifica-
tion.
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With some minor tricks the pure functional part of
the Erlang code is rather easily translated into a term
rewriting system on data, as necessary in a 4CRL model.
Communication in Erlang is translated into communi-
cating actions in yCRL as described in the next section.

5.2 Erlang to uCRL transformation

Given the Erlang modules that are transformed as de-
scribed above, the next step is to automatically gener-
ate a uCRL specification. Erlang is dynamically typed
whereas pCRL is strongly typed. Since we try to keep
the specification in yCRL as close to the Erlang code as
possible we construct in uCRL a data type ErlangTerm
in which all Erlang data types are embedded. All side-
effect free functions are added as a term rewriting system
over this ErlangTerm data type. A standard transforma-
tion is used to translate Erlang statements into the term
rewriting formalism. In addition, we have to define an
equivalence relation on data types, which is rather in-
volved. For instance, with only 14 different atoms and 7
data constructors, 440 equations are reserved for com-
paring data types, roughly two thirds of the whole spec-
ification.

With respect to the non-computation part, we ben-
efit from the fact that the Erlang to Erlang transfor-
mation was generated for a specific configuration and
contains all information on which processes are started.
This allows us to define the initial configuration in the
pCRL specification.

Manipulation of data in this process algebra is per-
formed purely functional, i.e., there are functions de-
fined on the data that result in manipulated data, but
no communication can be incorporated in this computa-
tion part. Processes describe the communication pattern
and the computations on the data; different from Er-
lang, these two parts are clearly separated, in the sense
that no communication takes place in a computation.
As a consequence, some code needs to be rewritten to
be translated. To clarify the latter, in Erlang one can
write a call to the function send reply as on page 6,
which results in a tuple. Part of that tuple is used in the
next call to send_reply. Here we have to lift the commu-
nication to the same level of the handle_call function
that is calling send_reply, i.e., not nested inside a com-
putation. From an Erlang point of view, it would look
like adding extra communication, where the last thing
the send _reply function does is sending a value to the
process that has called this function?.

send_reply(exclusive,Locksl,Exclusives, []),
receive
{Locks2,NewExclusives} ->
send_reply(shared,Locks2,Shared, [1),
receive
{Locks3,NewShared} —>

{reply,done,{Locks3,NewExclusives,NewShared}}.

end
end

In our tool this translation of function with nested com-
munication is directly performed from Erlang to uCRL,
without the above intermediate Erlang code, which is
only given to explain the translation. One could say that
we implemented the well known notion of a call-stack by
means of communication.

All functions that contain communication coincide
with the notion of a process in pCRL. Certain restric-
tions with respect to these uCRL processes have to be
taken into account; there is no pattern matching on data
parameters of a process. Thus several clauses of the same
Erlang function have to be translated in one yCRL pro-
cess by explicitly encoding of pattern matching. by using
the wCRL if-then-else construct (denoted by ‘then <|
if |> else’) and calls to newly introduced processes.

The synchronous calls of the generic server can be
translated directly in a synchronising pair of actions in
pCRL. This results in comfortably small state spaces,
much smaller than when we implement a buffer for a
server and use both synchronisation between another
process and the buffer of the server and synchronisation
between buffer and server. The latter is, however, nec-
essary if we use the more extended functionality of the
generic server, where we also have an asynchronous way
of calling the server. Moreover, the synchronous calls of
the generic server are implemented in Erlang by means
of asynchronous primitives. Therefore we implement for
every generic server process a buffer process in uCRL
for both synchronous and the asynchronous communi-
cation. We use the knowledge about the generic server
component to implement this buffer: the generic server
uses a fifo buffer structure. This is in contrast with an
arbitrary Erlang process, where a message can be read
from the buffer in any order. For illustration purpose, a
simplified version of this buffer in yCRL is given below.

comm

gen_server_call | gscall = buffercall
gshcall | handle_call = call
gen_server_reply | gen_server_replied = reply

handle_call(release, Client, {Locks,Exclusives,Shared}) ->

Locksl =
map (fun(Lock) ->
release_lock(Lock,Client)
end,Locks),

2 Assume a special tag for the Erlang receive to make sure the
right message is read from the queue.

proc

Server_Buffer(Self: ErlangTerm, Messages: GSBuffer) =

(bufferfull (Self).

gshcall(Self,call_term(Messages),call_pid(Messages)).

Server_Buffer (Self,rmhead(Messages)))
<| maxbuffer(Messages) [>
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(sum(Msg: ErlangTerm,
sum(From: ErlangTerm,
gscall(Self, Msg, From).
Server_Buffer(Self, addcall(Msg,From,Messages))))+
(gshcall (Self,call_term(Messages) ,call_pid(Messagesffi{equal(locker_check availables(Resources,
Server_Buffer (Self,rmhead(Messages)))) Type,first(State)),true),true) |>

tuple(locker_map_claim_lock(first(State),
Resources,Client,Type),
tuple(second(State) ,tuplenil(third(State))))))

((locker_serverloop(Self,
tuple(locker_map_add_pending(first(State),
Resources,Client,Type),
tuple (append(second(State),cons(Client,nil),

The buffer associated with each process is param-
eterised by its size and by default unbounded; during
the verification process the buffer is bound to a certain

size to allow the verifier to experiment with the size. The
latter is important, since some errors cause a buffer over-
flow, which induces a non-terminating generation of the
state space. However, if the message queue is bound to
a low enough value, the buffer overflow is visible as an
action in the state space.

The different clauses of the server’s handle_call func-
tion are combined in one puCRL loop, using the state
mentioned in the arguments of handle_call as state of
the loop. The unique process identifiers used in Erlang
are integrated as an argument (Self) of all process calls
and instantiated by the first call in the initial part.

For example, the Erlang code presented in Sect. 4.2
for the handling of a request message by the locker
process is translated to uCRL as shown below?.

The process locker_serverloop synchronises with
the buffer in the handle_call action which has as argu-
ments the identifier of the process, the message sent by
the client process and the process identifier of the client.
Then the availability of the resources is checked in the
function locker_check_availables which is the trans-

tuplenil(third(State))))))

<| eq(equal(Type,exclusive),true) |>
((locker_serverloop(Self,

tuple(locker_map_add_pending(first(State),

Resources,Client,Type),
tuple(second(State),

tuplenil (append(third(State),

cons(Client,nil)))))))
<| eq(equal(Type,shared) ,true) |>
delta)))
<| eq(equal(locker_check_availables(Resources,

Type,first(State)),false) ,true)

delta)))

The delta mentioned in the specification is a special sym-
bol for deadlock. These possible deadlocks are introduced by
the automatic translation due to the difference in Erlang and
pCRL. If the Erlang program is type safe, i.e., no runtime
type error occurs, then these delta’s will never cause a dead-
lock in the uCRL process. However, a runtime type error,
and hence a crash of the Erlang process, would result in a
deadlock of the uCRL process.

lation of the Erlang function call check_availables(Resources ,S&%%,,If.%té’ﬂgbg constructs are part of a pure computa-

Note that the pattern matching in Erlang is translated
by means of selection functions that extract the first,
second, etc. element of a tuple. If the resources are avail-
able, the client receives an ok, and the locker_serverloop
is called with an update of the state that reflects that
the resources are now being used by the client (function
locker map_claim lock).

Otherwise, the locker_serverloop is called with a
different update of the state to reflect that the client
is waiting for the resources to be released. This is done
slightly differently for shared access than for exclusive
access as explained in Sect. 4.2. Note that no message is
sent to the client in this case.

locker_serverloop(Self: ErlangTerm, State: ErlangTerm)

sum(Client: ErlangTerm,
sum(Resources: ErlangTerm,
sum(Type: ErlangTerm,

handle_call(Self,

tuple(request,tuple (Resources,tuplenil (Type), Cliel%}trﬁ)

(gen_server_reply(Client,ok,Self).
locker_serverloop(Self,

3 For completeness one of these automatically generated uCRL
specifications is available at http://www.cs.kent.ac.uk/~cb47/

tion part in Erlang. In a translation of such a match, we can-
not simply include a delta. In those cases, we add before the
computation an assertion that evaluates to assertion(true)
or assertion(false). If the latter of them appears in the
state space, this corresponds to a situation in which the Er-
lang program would have crashed on an impossible pattern
matching and we obtain for free a path from the initial state
to the location where this happens. We also provided the pos-
sibility to add user defined actions. By annotating the code
with dummy function calls, we may add extra actions to the
model to allow us to explicitly visualize a certain event.

In this way, the Erlang modules are translated into a
pCRL specification. By using the state space generation tool
for uCRL, we obtain the full state space, in the form of a
labelled transition system (LTS), for the possible runs of
the Erlang program. The labels in this state space are syn-
tactically equal to function calls in Erlang that accomplish
communication, e.g., gen_server:call. This makes debug-
ging the Erlang program easy when a sequence in the state
space is presented as counter-example to a certain property.
For that reason, the syntactically slightly different data struc-
in yCRL are translated back to Erlang data structures
é LTS.

Fig. 3 displays an LTS for the scenario mentioned in Sect.
4, where a supervision tree was started with a locker and
two clients, one client repeatedly requesting shared access
to resource A, the other repeatedly requesting exclusive ac-
cess to the resources A and B. In order to be able to show

1>
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gen_servertall(Locker {request,[A] shared} ,C2)

reply(pk.C2) reply(pk,C1)
reply(dgne.C2)

reply(dfne.C1)

gen_server:call(Lockentrequest [A] shared} C2) gen_server.call (L ocker.{request[A B exclUSve} C1)

Fig. 3. Example of a small LTS

it here, all the communication with the buffer has been hid-
den and the LTS reduced by using suitable tools from the
CESAR/ALDEBARAN toolset.
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The use of regular alternation free u-calculus to express
these properties allowed a sufficiently high level of abstraction
that meant we could reuse the expression of the properties
in each of the different prototypes with minimal changes. As
previously, we illustrate the process for the third prototype.

6.1 Mutual Exclusion

To prove mutual exclusion we formulate a property express-
ing that when a client gets exclusive access to a resource,
then no other client can access it before this client releases
the resource. This property is crucial in the AXD 301 locker
since otherwise when the process that wants to move an ap-
plication has exclusive access to it, another process may get
access to the application and perform critical operations at
the same time.

In order to simplify checking this we add two actions,
use and free, to the Erlang code which are automatically
translated into the uCRL specification®. As soon as a client
process enters its critical section, the use action is applied
with the list of resources the client is requesting as an argu-
ment.

Once we have obtained the state space, the CESAR/ALDEBARAN Before the client sends a release message to the locker

toolset is used for verifying properties, as is described in the
next section.

6 Checking properties with a model checker

In order to verify properties we have used the CESAR/ALDEBARAN

toolset which provides a number of tools including an in-
teractive graphical simulator, a tool for visualization of la-
belled transition systems (LTSs), several tools for computing
bisimulations (minimizations and comparisons), and a model
checker. Many aspects of the toolset were found useful for
exploring the behaviour of the algorithm, but here we con-
centrate on the model checker.

Model checking [9] is a formal verification technique which
performs automatic checking of properties against finite state
specifications. The major advantages of model checking are
that it is an automatic technique, and that when the model
of the system fails to satisfy a desired property, the model
checker always produces a counter example. These faulty
traces provide a priceless insight to understanding the real
reason for the failure as well as important clues for fixing the
problem.

The properties one wishes to check are formalized in an
appropriate logic, and the specification is written, here, as
an LTS. As mentioned previously, our specifications in yCRL
are translated into LTSs which are used as the model against
which properties are checked.

The logic used to formalize properties is the regular al-
ternation free p-calculus which is a fragment of the modal u-
calculus [22,13], a first-order logic with modalities and least
and greatest fixed point operators. Logics like CTL or ACTL
allow a direct encoding in the alternation free p-calculus.

Several safety and liveness properties have successfully
been verified on the three prototypes of the locker. Here we
explain in detail how mutual exclusion (Sect. 6.1) and non-
starvation (Sect. 6.2) are proved. The liveness property, non-
starvation, is the more difficult of the two.

process, it performs a free action®. In the logic we specify
the action in plain text or with regular expressions. However,
the formalism does not permit binding a regular expression
in one action and using it in another. Therefore, we have to
specify mutual exclusion for every resource in our system. We
defined a macro to help us improve readability:

BETWEEN (a1, a2, a3) = [-" . a1 . (—a2)" . as]false

stating that ‘on all possible paths, after an (a1) action, any
(as) action must be preceded by an (az) action’.

The mutual exclusion property depends on the number of
resources. For a system with two resources, A and B, the mu-
tual exclusion property for the third prototype is formalized
by

MUTEX (A, B) =
BETWEEN ('use(.*A.*, exclusive)’, 'free(.*A.*)’, "use(.*A.
BETWEEN ('use(.*B.*, exclusive)’, 'free(.*B.*)’, 'use(.*B.

Informally the property states that when a client obtains
exclusive access to resource A no other client can access it
until the first client frees the resource, and the same for re-
source B. Note that the CESAR/ALDEBARAN toolset allows
us to use regular expressions over strings together with stan-
dard p-calculus formulas.

The mutual exclusion property has been successfully checked

for various configurations up to three resources and five clients
requesting exclusive or shared access to the resources.

For example, a scenario with five clients requesting ex-
clusive access to three resources where client 1 requests A,
client 2 requests B, client 3 requests A, B and C, client 4
requests A and B, and client 5 requests C, contains about
30 thousand states. Building an LTS for this example takes

4 The tools allow renaming of labels in the LTS, which could
have been used as well.

5 This free action is non-synchronizing and therefore it can take
the role of the release message, but also contains the resources that
are released.
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gen_server:call(Locker, Y

Fig. 4. mutex counterexample

roughly thirteen minutes, while checking the mutual exclu-
sion property takes only nine seconds. A bigger state space
of one million states needs one hour to be built and four min-
utes to be checked for mutual exclusion. Part of the reason
that building the LTS takes much more time than checking
a property is that we deal with data and that a lot of com-
putation is done in between the visible actions (only visible
actions correspond to states in the LTS).

As stated in the previous section, model checking is a
powerful debugging tool. Imagine that the code of the locker
contains the following error: the function check_available is
wrongly implemented such that when a client requests a re-
source there is no check that the resource is being used by an-
other client. Now consider a scenario with two clients, client 1
and client 2, requesting the same resource A. Given the LTS
for this scenario and the property MUTEX (A), the model
checker returns false and the counter example as shown in
Fig. 4.

The counter example generated depicts an execution trace
of client 1 requesting and obtaining resource A and client 2
requesting and obtaining resource A, that is, both processes
enter the critical section and, therefore, mutual exclusion is
not preserved. The numbers that appear inside the circles
correspond to the numbers of the states as they appear in the
complete LTS. By keeping the Erlang code and our uCRL
specification as close as possible, this trace helps us easily
identify the run in the Erlang program.

Although we only use a small number of clients and re-
sources, this already illustrates the substantive behaviour. In
a fashion similar to that when we test software, we choose
our configurations in such a way that we cover many unique
situations, however, in contrast to testing, we explore all pos-
sible runs of a certain configuration. In our case-study there
are at most 32 Erlang nodes and at most 16 lockers, which
all have only a small number of resources (applications) to
manage. We have checked the properties for scenarios with at
most five clients in order to develop our methodology. Later
we plan to scale up this approach once we have determined
the optimal strategies.

6.2 Non-Starvation

Starvation is the situation where a client that has requested
access to resources never receives permission from the locker
to access them. Because exclusive access has priority over
shared access, the algorithm contains potential starvation for
clients requesting shared access to resources that are also
exclusively requested. More precisely, the clients requesting
exclusive access have priority over all clients that are waiting
for shared access, therefore the ones requesting shared access
can be withheld from their resources.

gen_server:call(Locker { va,[A] exclusive}.C1) 1 Goker release.C1)

Fig. 5. Unreal starvation of client 2

Within the use of the software in the AXD at most one
client is requesting exclusive access to the resources (the take-
over process). In that setting, the starvation of clients re-
questing shared access cannot occur, as we prove below. The
reason is the synchronized communication for the release. As
soon as the client requesting exclusive access sends a release
to the locker, all waiting shared clients get access to the re-
sources they requested (they share them). Only after this an
acknowledgement is sent to the releasing client.

Here we look at more general cases where more than one
client is requesting exclusive access to the resources (since
this type of scenarios may occur in a more general setting).

Because of the fact that the algorithm contains a certain
form of starvation, the property one wants to check for non-
starvation has to be specified with care. The following cases
have been verified: non-starvation of clients requesting ex-
clusive access and non-starvation of clients requesting shared
access in the presence of at most one exclusive request.

6.2.1 Non-starvation for exclusive access

Proving that there is no starvation for the clients requesting
exclusive access to the resources turned out to be tricky. This
is caused by the fact that there are traces in the LTS that do
not correspond to a fair run of the Erlang program.

The Erlang run-time system guarantees that each process
obtains a slot of time to execute its code. However, in the
LTS there are traces where certain processes do not get any
execution time, even though they are enabled along the path.
To clarify this, let us consider a scenario with two resources
and three clients.

Client 1 requests resource A and obtains access to it,
client 2 request resource A and has to wait. Thereafter client
3 requests B, obtains access to it, releases the resource and
requests it again. Fig. 5 shows a part of the LTS where
there is a clear starvation situation for client 2, viz. infinitely
often traversing the cycle that client 3 is responsible for
(4523251024 54— ...).

The above scenario, however, does not reflect the real
execution of the program since the Erlang run-time system
will eventually schedule client 1 to execute its code. Client 1
will sooner or later release resource A, which causes client 2 to
get access to the resource. In the LTS, it is visible that client
2 has the possibility to access resource A, but the unfair cycle
of client 3 hides the fact that this will happen. Note, though,
that we cannot simply forget about every cycle. If the cycle
would be shown with resource A instead of B mentioned, then
this would indicate a real starvation.

One could think of a number of solutions to solve the
problem of cycles in the LTS that do not correspond to fair
infinite computations in the Erlang program. For example,
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one could explicit model the Erlang run-time scheduler. How-
ever, modelling the scheduler is a rather complex solution
that would increase the size of the LTS notably. Besides, we
would be scheduling the actions in the ygCRL code, not in the
real Erlang code. Thus we would not be sure that starvation
really occurs in the Erlang implementation.

Another possible solution is to encode the unrealistic cy-
cles, i.e., the ones that the real scheduler would exclude, in
the property so that they are ignored. In order to do that
we need to characterize the unrealistic cycles. An unrealistic
cycle corresponds to unfair execution of a number of clients
that are independent of the client one wants to prove non-
starvation for.

In our specific case a client depends on another client
when the intersection of the sets of resources they request
is non-empty. Given that one is interested in proving non-
starvation of a certain client, then computing the clients that
are independent of this client is done by taking the comple-
ment of the reflexive, transitive closure of this dependency re-
lation. If we now consider all actions of independent clients to
be internal actions (7 actions in process algebra terminology),
then non-starvation of the client C we are interested in, could
be expressed by the guaranteed occurrence of 'reply(ok,C)’
in any path starting from 'gen_server: call(.*request.*,C)’,
modulo possible cycles with only 7 steps. This can be ex-
pressed by the following formula in the pu-calculus, where
we allow only finite cycles of actions that are neither 7, nor
"reply(ok,C)" actions. Infinite sequences of only 7 actions are,
however, permitted:

[-* . 'gen_server: call(.* request.*, C)']
pX.(VY.((-)true A [-T A ='reply(ok,C)'|X A [T]Y)).

The disadvantage with the above formula is that it has al-
ternating fixed point operators and hence the model checker
cannot verify this property.

The solution is to reduce the state space by use of obser-
vational equivalence [25] and a facility to do this is provided
by the CESAR/ALDEBARAN toolset. By applying this reduc-
tion we replaced actions of independent processes by internal
actions, we obtain a model in which pure 7 cycles no longer
occur. Thus, we removed all unfair cycles.

Modulo observational equivalence, the formula to prove
non-starvation becomes much simpler and, in particular, is
alternation-free:

NONSTARVATION (C) =
[-* . 'gen_server: call(.*request.*, C)']
uX.((-)true A [='reply(ok,C)'1X)

Verification of non-starvation for a configuration of clients
and resources is now performed by consecutively selecting a
process that requests exclusive access to a set of resources. We
manually determine the set of processes that is independent
of this process, and then hide the labels of the independent
processes. The LTS obtained is reduced modulo observational
bisimulation, and we can then verify the above given property
on the reduced LTS.

In this way we successfully verified non-starvation of the
clients requesting exclusive access to resources in several con-
figurations. We also found a counter example, by checking
this property for a process that requests shared access to
resources in a configuration where two clients ask exclusive
access to resource A and a third requests shared access to A.

In this case we see that the third client is starving. This is ex-
actly as we expect, since clients demanding exclusive access
have priority over clients asking for shared access.

6.2.2 Non-starvation for shared access

Even though clients that request shared access to a resource
may potentially starve, as explained above, we can still prove
non-starvation of all the clients in the system, provided that
at most one client demands exclusive access.

In analogy to the procedure described above, we hide the

actions of independent processes and verify NONSTARVATION (C)

for every client C' in the configuration. As such, the verifica-
tion is performed successfully.

7 Automation of verification

In the previous sections we described the automatic trans-
lation of Erlang to uCRL and we showed how the proper-
ties mutual exclusion and non-starvation are verified. In this
section we explain how the verification of properties can be
automated.

Automation is achieved by using the Script Verification
Language (SVL) from the C£SAR/ALDEBARAN toolset. SVL
allows us to simplify and automate the verification by means
of high-level operators on the LTSs, for instance, minimisa-
tion, label hiding, label renaming and model-checking oper-
ators, and several methods of verification. Moreover, Bourne
shell commands can be invoked within an SVL description,
thus, the tool to translate Erlang to uCRL, etomcrl, and the
uCRL tools to build the LTS can be called within the script.

This script is called with the Erlang term that should
start the application in a certain configuration. The super-
vision design contains all information for the Erlang loading
system to automatically locate the necessary modules. Thus,
this one Erlang term suffices for automatically generating a
pCRL specification. The script contains further instructions
to use the state space generation tool in order to build the
LTS from the puCRL specification. The same script is used
to verify the properties for this LTS with the model checking
tool. The outcome of the model checker is either true or false
and in the latter case a counter-example is saved. The script
makes sure that this counter example is stored for later in-
spection. In this way, provided the simple scripts, our tool
automatically verifies properties of real Erlang applications.

However, when verifying the non-starvation property we
perform several manipulations of the LTS, reduce the LTS
with respect to observational bi-simulation and only then
verify the property. This is expressible in a script, but at
present our tool cannot generate such a script automatically
(see Fig. 6).

We accept that a certain ingenuity is necessary to create
both property and script, but given the fact that we want to
use our tool in an iterative development process, we want to
minimise the number of times that these properties have to
be updated because of a small change in the configuration or
application.

In the following two subsections, we show that verification
is parametric with respect to a given configuration and with
respect to the application with certain restrictions.
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7.1 Independence of configuration

The properties given in Sect. 6 depend on the actual names
of the resources.

For example, for the mutual exclusive property a BETWEEN

clause is added for every resource available in the system. We
solved this by using only one property, viz.

MUTEX =
[-* . "use(exclusive)’ . (—'free(exclusive)')* . "use(.*)'] false

and rename the appropriate actions in the state space. Thus,
given that r is a resource in the system, we rename the labels
‘use(r, exclusive)’ to ‘use(exclusive)’ etc. After this renam-
ing, it suffices to check the above property in order to prove
mutual exclusion for resource r. This is repeated for all re-
sources. The script that performs the renaming and checking
is generated from the configuration. Of course, renaming and
model checking several times is in general more expensive
than only performing the model checking with a more com-
plicated property. We could also automatically generate this
more complicated property from the configuration, but would
then need to describe the property as a kind of template with
an unbounded number of these BETWEEN clauses. The mo-
tivation for our approach is that the properties should be easy
to read and understand and that we want to stick to a stan-
dard logic. We trade understandability of the property for
efficiency of the verification.

For verification of non-starvation we go one step further.
Here the property depends on the process identifier of the
client. We restrict to one property here as well, viz.

NONSTARVATION =
[-* . 'request’|uX.((-)true A [~'0k']X)

We have to build a graph of processes that depend on a com-
mon resource. From the configuration we obtain information
on which resources a client needs. By storing the process
identifier of the client together with the resources this client
requests in the vertex of a graph and by adding an edge
whenever two nodes have a resource in common, it is easy
to obtain all processes that depend on a certain client, viz.
all those that are in the same closely connected component.
This is straight-forward to implement, but realizing that this
algorithm is what we need for verification of non-starvation
is not part of the automation.

For every client we repeat the same steps in a script.
We hide all processes (i.e., rename to 7) that are not de-
pendent on this process and rename all actions of depending
processes to a constant other. In this way only the request,
ok, and release messages of the process we want to verify
non-starvation for remain as labels in the LTS. The above
property can therefore be used for our verification purposes.
In Fig. 6 such a script is presented for a configuration with
three clients of which two are depending on each other, in par-
ticular, the client process with process identifier 0 requests
exclusive access to resource A, the client process with process
identifier 1 requests exclusive access to resource B, and the
client process with process identifier 2 also requests exclusive
access to resource B.

Since non-starvation has to be checked for all clients sep-
arately, there is not the same decrease in performance as
for the mutual exclusion property. In the most optimal case

%echo no starvation process 0
verify "properties/non_starvation.mcl" in
observational reduction with aldebaran of

rename ".*ok.*" -> "ok", ".*request.*" -> "request",

".xrelease.*" -> "release" in
hide ".*pid(2).*", ".*pid(1).*" in
"locker.bcg";

%echo no starvation process 1
verify "properties/non_starvation.mcl" in
observational reduction with aldebaran of

rename ".*ok.*" -> "ok", ".*request.*" -> "request",

".*release.*" -> "release" in
rename ".*pid(2).*" -> "other" in
hide ".*pid(0).*" in
"locker.bcg";

%echo no starvation process 2
verify "properties/non_starvation.mcl" in
observational reduction with aldebaran of

rename ".*ok.*" -> "ok", ".*request.*" -> "request",

" xrelease.*" -> "release" in
rename ".*pid(1).*" -> "other" in
hide ".*pid(0).*" in
"locker.bcg";

Fig. 6. SVL script for verification of non-starvation for certain
configuration

one renaming per group of dependent processes could suffice.
Again we motivate our choice by claiming that the property
in combination with the script is easier to understand than
the more involved properties that we would get if we consider
a whole group at once.

7.2 Independence of development iteration

Using the technique of creating scripts as described above we
obtain a situation in which the mechanical steps of perform-
ing a verification are independent of the configuration. This
is useful when an application reached a certain point in its
development and is verified for a number of configurations.

However, the application will be modified and features
will be added. As long as those modifications do not influ-
ence the syntax of the messages that are communicated, the
verification approach is not affected. Changes in the commu-
nication, though, normally required to investigate whether
the properties and scripts have to be changed.

In our case-study, the syntax of the messages is only
slightly modified through the iterations on the code. Lets
consider the mutual exclusion property. In the first iteration
of the locker algorithm, there is only one resource in the sys-
tem, therefore, the property mutual exclusion in this case had
been defined as:

MUTEX = [-* . use' . (='free’)” . 'use'|false

The same property holds for the second iteration of the code
where there are several resources but with only exclusive ac-
cess to them. For every resource r, the actions use(r) are
renamed to use.
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However, in the case of the third iteration where resources
may also be shared by different clients, the above property
is not sufficient. Here we only want to prove mutual exclu-
sion for exclusive access, but we need to take into account
that the resources may also be obtained for shared access.
Thus, the property mutual exclusion is the one shown in
the previous subsection. Note that the property is a slight
modification of the property presented here, where instead
of the first use we write use(exclusive), instead of free we
write free(ezclusive) and instead of the second use we write
use(.*) which stands for both exclusive and shared access to
the resource. In other words, there need not be changed much
in the properties to employ the automatic verification from
one iteration of the code to the next.

8 Conclusions

In this paper we have discussed an approach to developing
verified Erlang code. This paper is an extended version of the
contribution to FMICS [2], where an earlier iteration of the
resource manager is described. In this paper we focus on the
iteration of the resource manager as we have described for
FME [3], with two types of access to resources. Compared to
the FME contribution, we describe the construction of the
tool in more detail and focus on the support for the develop-
ment process.

As commented earlier, there are a number of approaches
to verifying code. For example, a formal development pro-
cess might start with a formal specification and use verified
refinement steps in order to produce code compliant with the
original specification. The development process our work fits
into is different on a number of fronts. First, we are working
in a context of an established process which makes full use of
software libraries that have been extensively tested. Second,
we wish our verification to sit alongside the standard coding
and testing of the Erlang components and to use verification
to check key properties of the code.

To this extent our approach consists of the following steps.
The Erlang code for a component is automatically trans-
lated to a process algebraic specification written in uCRL.
We then generate a labelled transition system (LTS) from
this uCRL specification by using components of the uCRL
toolset. The properties of interest are then written in the
logic of the model checker we use, here we use the regular
alternation-free u-calculus to express non-starvation and mu-
tual exclusion. The labelled transition system is then checked
against this property using the CESAR/ALDEBARAN toolset.
For some properties it is necessary to transform the LTS (e.g.,
using hiding for non-starvation) so that we can model check
with a simpler formulation of the property of interest (e.g.,
one without alternating fixed points).

The case study we discussed in this paper was drawn from
a critical part of the AXD 301 software consisting of about
250 lines of Erlang code, which implements a resource lock-
ing problem for which we prove properties such as mutual
exclusion and non-starvation. Although we re-implemented
the software to substantially simplify the code, the principles
underlying the code we used are exactly the same as those in
the actual switch code. In the code of the resource manager
in the AXD 301 both the resource manager and a leader elec-
tion protocol are combined. We separated these two concepts

and concentrated on a clean implementation of both. In this
paper we have described the resource locker code. We used
the same design principles, coding style and libraries as were
used in the production code. Even the names of variables
and functions are the same in our implementation as in the
original software.

Our approach has advantages and disadvantages. The
ability to automate many aspects of the process is one of the
key advantages, however, we currently have to fix the number
of clients and resources per verification. Tackling this issue,
and determining how to verify properties for arbitrary num-
bers of clients and resources without a crippling performance
overload, is ongoing work. Relevant to this might be the use
of theorem proving, since the Erlang theorem prover can be
used to prove similar properties, in particular if one uses the
extra layer of semantics for software components added to
the proof rules [5]. However, such a proof has to be provided
manually, and this contrasts with the ability to automate,
which is an advantage of model checking. However, with a
theorem prover one can reason about sets of configurations
at once, and not fix the number of clients and resources per
attempt. Integrating the two approaches might offer some
combined benefits.

The translation of Erlang into pyCRL that we discussed
above is performed automatically, and is sufficiently robust
so that it can deal with a large enough part of the language
to make it applicable to serious examples. Although the tool
which calculates the state spaces for pCRL models [11] is
advanced and stable, it still takes of the order of a few min-
utes up to several hours to generate a state space. Once the
model is generated model checking is relatively quick: with
the CESAR/ALDEBARAN toolset takes only a few seconds up
to a few minutes. This comparative difference is partly due
to the computation on the complex data structures we have
in our algorithm.

Some further optimisations could be envisaged. In some
cases it is unnecessary to generate the whole state space,
for example when the property of interest does not hold. A
collaboration between both providers of the external tools
recently resulted in an on-the-fly model checker to overcome
this inconvenience. At the same time a distributed state space
generation and model checking tool are being built as coop-
eration between CWI and Aachen University [8]. With such
a tool, a cluster of machines can be used to quickly analyse
rather large state spaces. Experiments showed that an LTS
with 20 million states would be generated in a few hours.

All of this work points to a situation where the formal
verification of Erlang programs is slowly becoming practi-
cally possible, particularly for the development of new pro-
grams [2]. An experiment with using the tool to develop the
scheduler software for a video-on-demand server underwrites
this [6]. Further work that we are undertaking includes the
extension of our translation tool to cover more components
and to deal with fault tolerance. At the moment, crashing
and restarting of processes is not considered inside the yCRL
model, so that properties about the fault tolerance behaviour
cannot be expressed. In the near future we plan to verify more
software and construct a library of verified Erlang programs
that can be used within Ericsson products.
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